Inequalities and stability of stochastic fuzzy delayed Cohen–Grossberg neural networks
نویسندگان
چکیده
Stability is an important indicator for evaluating complex dynamic systems’ performance. Many problems in practice are abstracted into the stability of networks. This study examines stochastic fuzzy Cohen-Grossberg neural networks(CGNNs) with delayed pth moment exponential and almost sure stability. It improvement supplement to existing work. Our method based on integral inequality, differential analysis theory Itô’s formula, which discusses system’s stability, we have obtained sufficient conditions system avoided construction Lyapunov functions. Moreover, our does not require that activation function be bounded, differentiable monotone, provides con·editions decreased conservative. At same time, it verified terms positive effects Finally, effectiveness results by a simulation example.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
robust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays
in this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the takagi-sugeno (t-s) fuzzy models is considered. a novel linear matrix inequality (lmi)-based stability criterion is obtained by using lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملSynchronization control of stochastic delayed neural networks
In this paper, synchronization control of stochastic neural networks with time-varying delays has been considered. A novel control method is given using the Lyapunov functional method and linear matrix inequality (LMI) approach. Several sufficient conditions have been derived to ensure the global asymptotical stability in mean square for the error system, and thus the drive system synchronize w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3300581